The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Enhancing ENSO Prediction Skill by Combining Model-Analog and Linear Inverse Models (MA-LIM)
-
2020
-
-
Source: Geophysical Research Letters, 47, e2019GL085914.
Details:
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:To enhance El Niño–Southern Oscillation (ENSO) forecast skill, we devise a model analog (MA)-linear inverse model (LIM) by nudging sea surface temperature and sea surface height anomalies forecasted by the LIM into the MA. The performances of the LIM, MA, and MA-LIM are compared to general circulation model simulations and observations. At short (long) lead month urn:x-wiley:grl:media:grl60049:grl60049-math-0001, the LIM (MA) predicts the Niño 3.4 SST anomalies better than the MA (LIM). On the other hand, the MA-LIM shows the best performance at all urn:x-wiley:grl:media:grl60049:grl60049-math-0002. At urn:x-wiley:grl:media:grl60049:grl60049-math-0003, the MA performs better than the LIM in the eastern equatorial Pacific and Indian Oceans but worse in other regions. The MA-LIM substantially remedies the undesirable aspects of the MA. The success of the MA-LIM appears to come from the use of more accurate initial conditions than the MA and an ad hoc implementation of seasonal cycle and nonlinearities into the LIM through nudging to the MA.
-
Keywords:
-
Source:Geophysical Research Letters, 47, e2019GL085914.
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: