The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Impact of Annual Cycle on ENSO Variability and Predictability
-
2020
-
-
Source: Journal of Climate, 34(1), 171-193.
Details:
-
Journal Title:Journal of Climate
-
Personal Author:
-
NOAA Program & Office:
-
Description:Low-order linear inverse models (LIMs) have been shown to be competitive with comprehensive coupled atmosphere–ocean models at reproducing many aspects of tropical oceanic variability and predictability. This paper presents an extended cyclostationary linear inverse model (CS-LIM) that includes the annual cycles of the background state and stochastic forcing of tropical sea surface temperature (SST) and sea surface height (SSH) anomalies. Compared to a traditional stationary LIM that ignores such annual cycles, the CS-LIM is better at representing the seasonal modulation of ENSO-related SST anomalies and their phase locking to the annual cycle. Its deterministic as well as probabilistic hindcast skill is comparable to the skill of the North American Multimodel Ensemble (NMME) of comprehensive global coupled models. The explicit inclusion of annual-cycle effects in the CS-LIM improves the forecast skill of both SST and SSH anomalies through SST–SSH coupling. The impact on the SSH skill is particularly marked at longer forecast lead times over the western Pacific and in the vicinity of the Pacific North Equatorial Countercurrent (NECC), consistent with westward propagating oceanic Rossby waves that reflect off the western boundaries as eastward propagating Kelvin waves and influence El Niño development in the region. The higher CS-LIM skill is thus associated with the improved representation of both ENSO phase-locking and Pacific NECC variations. These improvements result from explicitly accounting for not only the annual cycle of the background state, but also that of the stochastic forcing.
-
Keywords:
-
Source:Journal of Climate, 34(1), 171-193.
-
DOI:
-
Document Type:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: