Assessing the sensitivity of three Alaska marine food webs to perturbations: an example of Ecosim simulations using Rpath
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Assessing the sensitivity of three Alaska marine food webs to perturbations: an example of Ecosim simulations using Rpath

Filetype[PDF-2.01 MB]



Details:

  • Journal Title:
    Ecological Modelling
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Ecosystem modelling is a useful tool for exploring the potential outcomes of policy options and conducting experiments that would otherwise be impractical in the real world. However, ecosystem models have been limited in their ability to engage in the management of living marine resources due in part to high levels of uncertainty in model parameters and model outputs. Additionally, for multispecies or food web models, there is uncertainty about the predator-prey functional response, which can have implications for population dynamics. In this study, we evaluate the sensitivity of large marine food webs in Alaska to parameter uncertainty, including parameters that govern the predator-prey functional response. We use Rpath, an R implementation of the food web modeling program Ecopath with Ecosim (EwE), to conduct a series of mortality-based perturbations to examine the sensitivity and recovery time of higher trophic level groups in the eastern Chukchi Sea, eastern Bering Sea, and Gulf of Alaska. We use a Monte Carlo approach to generate thousands of plausible ecosystems by drawing parameter sets from the range of uncertainty around the base model parameters. We subjected the ecosystem ensembles to a series of mortality-based perturbations to identify which functional groups the higher trophic level groups are most sensitive to when their mortality was increased, whether the food webs returned to their unperturbed configurations following a perturbation, and how long it took to return to that state. In all three ecosystems, we found that the number of disrupted ensemble food webs was positively related to the biomass and the number of trophic links of the perturbed functional group, and negatively related to trophic level. The eastern Chukchi Sea was most sensitive to perturbations to benthic invertebrate groups, the eastern Bering Sea was most sensitive to shrimp and walleye pollock, and the Gulf of Alaska was most sensitive to shrimps, pelagic forage fish, and zooplankton. Recovery time to perturbations were generally less than 5 years in all three ecosystems. The recovery times when fish groups were perturbed were generally longer than when benthic invertebrates were perturbed, and recovery times were shortest when it was pelagic invertebrates. The single model ensemble approach produced simulation results that described a range of possible outcomes to the prescribed perturbations and provided a sense for how robust the results are to parameter uncertainty.
  • Keywords:
  • Source:
    Ecological Modelling, 429
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1