i
Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces
-
2020
-
-
Source: Science Advances, 6(22)
Details:
-
Journal Title:Science Advances
-
Personal Author:
-
NOAA Program & Office:
-
Description:An unsupervised learning method is presented for determining global marine ecological provinces (eco-provinces) from plankton community structure and nutrient flux data. The systematic aggregated eco-province (SAGE) method identifies eco-provinces within a highly nonlinear ecosystem model. To accommodate the non-Gaussian covariance of the data, SAGE uses t-stochastic neighbor embedding (t-SNE) to reduce dimensionality. Over a hundred eco-provinces are identified with the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Using a connectivity graph with ecological dissimilarity as the distance metric, robust aggregated eco-provinces (AEPs) are objectively defined by nesting the eco-provinces. Using the AEPs, the control of nutrient supply rates on community structure is explored. Eco-provinces and AEPs are unique and aid model interpretation. They could facilitate model intercomparison and potentially improve understanding and monitoring of marine ecosystems.
-
Keywords:
-
Source:Science Advances, 6(22)
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: