Flash drought in Australia and its relationship to evaporative demand
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Flash drought in Australia and its relationship to evaporative demand

Filetype[PDF-9.02 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Alternative Title:
    Flash droughts can be distinguished by rapid intensification from near-normal soil moisture to drought conditions in a matter of weeks. Here, we provide the first characterisation of a climatology of flash drought across Australia using a suite of indices. The experiment is designed to capture a range of conditions related to drought: evaporative demand describes the atmospheric demand for moisture from the surface; precipitation, the supply of moisture from the atmosphere to the surface; and evaporative stress, the supply of moisture from the surface relative to the demand from the atmosphere. We show that regardless of the definition, flash droughts occur in all seasons. They can terminate as rapidly as they start, but in some cases can last many months, resulting in a seasonal-scale drought. We show that flash-drought variability and its prevalence can be related to phases of the El Niño–Southern Oscillation, highlighting scope for seasonal-scale prediction. Using a case study in southeast Australia, we show that monitoring precipitation is less useful for capturing the onset of flash drought as it occurs. Instead, indices like the Evaporative Demand Drought Index and Evaporative Stress Index are more useful for monitoring flash-drought development.
  • Journal Title:
    Environmental Research Letters
  • Description:
    Flash droughts can be distinguished by rapid intensification from near-normal soil moisture to drought conditions in a matter of weeks. Here, we provide the first characterisation of a climatology of flash drought across Australia using a suite of indices. The experiment is designed to capture a range of conditions related to drought: evaporative demand describes the atmospheric demand for moisture from the surface; precipitation, the supply of moisture from the atmosphere to the surface; and evaporative stress, the supply of moisture from the surface relative to the demand from the atmosphere. We show that regardless of the definition, flash droughts occur in all seasons. They can terminate as rapidly as they start, but in some cases can last many months, resulting in a seasonal-scale drought. We show that flash-drought variability and its prevalence can be related to phases of the El Niño–Southern Oscillation, highlighting scope for seasonal-scale prediction. Using a case study in southeast Australia, we show that monitoring precipitation is less useful for capturing the onset of flash drought as it occurs. Instead, indices like the Evaporative Demand Drought Index and Evaporative Stress Index are more useful for monitoring flash-drought development.
  • Keywords:
  • Source:
    Environmental Research Letters, 16(6)
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26