i
The Continuum of Wintertime Southern Hemisphere Atmospheric Teleconnection Patterns
-
2016
-
Source: Journal of Climate, 28(24), 9507-9529
Details:
-
Journal Title:Journal of Climate
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study uses the method of self-organizing maps (SOMs) to categorize the June–August atmospheric teleconnections in the 500-hPa geopotential height field of the Southern Hemisphere (SH) extratropics. This approach yields 12 SOM patterns that provide a discretized representation of the continuum of SH teleconnection patterns from 1979 to 2012. These 12 patterns are large in spatial scale, exhibiting a mix of annular mode characteristics and wave trains of zonal wavenumber varying from 2 to 4. All patterns vary with intrinsic time scales of about 5–10 days, but some patterns exhibit quasi-oscillatory behavior over a period of 20–30 days, whereas still others exhibit statistically significant enhanced and suppressed frequencies up to about four weeks in association with the Madden–Julian oscillation. Two patterns are significantly influenced by El Niño–Southern Oscillation (ENSO) on interannual time scales. All 12 patterns have strong influences on surface air temperature and sea ice concentrations, with the sea ice response occurring over a time scale of about 2–4 weeks. The austral winter has featured a positive frequency trend in patterns that project onto the negative phase of the southern annular mode (SAM) and a negative frequency trend in positive SAM-like patterns. Such atmospheric circulation trends over 34 yr may arise through atmospheric internal variability alone, and, unlike other seasons in the SH, it is not necessary to invoke external forcing as a dominant source of circulation trends.
-
Keywords:
-
Source:Journal of Climate, 28(24), 9507-9529
-
DOI:
-
Document Type:
-
Place as Subject:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: