Historical and future changes in air pollutants from CMIP6 models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Historical and future changes in air pollutants from CMIP6 models

Filetype[PDF-16.67 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Poor air quality is currently responsible for large impacts on human health across the world. In addition, the air pollutants ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5) are also radiatively active in the atmosphere and can influence Earth's climate. It is important to understand the effect of air quality and climate mitigation measures over the historical period and in different future scenarios to ascertain any impacts from air pollutants on both climate and human health. The Coupled Model Intercomparison Project Phase 6 (CMIP6) presents an opportunity to analyse the change in air pollutants simulated by the current generation of climate and Earth system models that include a representation of chemistry and aerosols (particulate matter). The shared socio-economic pathways (SSPs) used within CMIP6 encompass a wide range of trajectories in precursor emissions and climate change, allowing for an improved analysis of future changes to air pollutants. Firstly, we conduct an evaluation of the available CMIP6 models against surface observations of O3 and PM2.5. CMIP6 models consistently overestimate observed surface O3 concentrations across most regions and in most seasons by up to 16 ppb, with a large diversity in simulated values over Northern Hemisphere continental regions. Conversely, observed surface PM2.5 concentrations are consistently underestimated in CMIP6 models by up to 10 µg m−3, particularly for the Northern Hemisphere winter months, with the largest model diversity near natural emission source regions. The biases in CMIP6 models when compared to observations of O3 and PM2.5 are similar to those found in previous studies. Over the historical period (1850–2014) large increases in both surface O3 and PM2.5 are simulated by the CMIP6 models across all regions, particularly over the mid to late 20th century, when anthropogenic emissions increase markedly. Large regional historical changes are simulated for both pollutants across East and South Asia with an annual mean increase of up to 40 ppb for O3 and 12 µg m−3 for PM2.5. In future scenarios containing strong air quality and climate mitigation measures (ssp126), annual mean concentrations of air pollutants are substantially reduced across all regions by up to 15 ppb for O3 and 12 µg m−3 for PM2.5. However, for scenarios that encompass weak action on mitigating climate and reducing air pollutant emissions (ssp370), annual mean increases in both surface O3 (up 10 ppb) and PM2.5 (up to 8 µg m−3) are simulated across most regions, although, for regions like North America and Europe small reductions in PM2.5 are simulated due to the regional reduction in precursor emissions in this scenario. A comparison of simulated regional changes in both surface O3 and PM2.5 from individual CMIP6 models highlights important regional differences due to the simulated interaction of aerosols, chemistry, climate and natural emission sources within models. The projection of regional air pollutant concentrations from the latest climate and Earth system models used within CMIP6 shows that the particular future trajectory of climate and air quality mitigation measures could have important consequences for regional air quality, human health and near-term climate. Differences between individual models emphasise the importance of understanding how future Earth system feedbacks influence natural emission sources, e.g. response of biogenic emissions under climate change.
  • Keywords:
  • Source:
    Atmos. Chem. Phys., 20, 14547–14579, 2020
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1