The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria

Filetype[PDF-6.25 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The increasing trend of aerosol optical depth in the Middle East and a recent severe dust storm in Syria have raised questions as to whether dust storms will increase and promoted investigations on the dust activities driven by the natural climate variability underlying the ongoing human perturbations such as the Syrian civil war. This study examined the influences of the Pacific Decadal Oscillation (PDO) on dust activities in Syria using an innovative dust optical depth (DOD) dataset derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol products. A significantly negative correlation is found between the Syrian DOD and the PDO in spring from 2003 to 2015. High DOD in spring is associated with lower geopotential height over the Middle East, Europe, and North Africa, accompanied by near-surface anomalous westerly winds over the Mediterranean basin and southerly winds over the eastern Arabian Peninsula. These large-scale patterns promote the formation of the cyclones over the Middle East to trigger dust storms and also facilitate the transport of dust from North Africa, Iraq, and Saudi Arabia to Syria, where the transported dust dominates the seasonal mean DOD in spring. A negative PDO not only creates circulation anomalies favorable to high DOD in Syria but also suppresses precipitation in dust source regions over the eastern and southern Arabian Peninsula and northeastern Africa.

    On the daily scale, in addition to the favorable large-scale condition associated with a negative PDO, enhanced atmospheric instability in Syria (associated with increased precipitation in Turkey and northern Syria) is also critical for the development of strong springtime dust storms in Syria.

  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 16(21), 13431-13448
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1