i
The LMARS Based Shallow-Water Dynamical Core on Generic Gnomonic Cubed-Sphere Geometry
-
2021
-
Source: Journal of Advances in Modeling Earth Systems, 13(1)
Details:
-
Journal Title:Journal of Advances in Modeling Earth Systems
-
Personal Author:
-
NOAA Program & Office:
-
Description:The rapidly increasing computing powers allow global atmospheric simulations with aggressively high resolutions, challenging traditional model design principles. This study presents a Low Mach number Approximate Riemann Solver (LMARS) based unstaggered finite-volume model for solving the shallow-water equations on arbitrary gnomonic cubed-sphere grids. Using a novel reference line-based grid-generation process, it unifies the representation of arbitrary gnomonic cubed-sphere grid projections and permits high-efficiency 1D reconstruction in the halo regions. The numerical discretization also extends a widely used pressure gradient algorithm with the LMARS viscous term, thus improves the model's stability for various numerical applications. The solver demonstrates a broad range of organic diffusion control without any explicit filters, validated by a comprehensive set of test cases. Lastly, a newly introduced splash on the sphere test verifies the solver's desirable dispersion properties and consistent performance among different grid types. This study paves a solid foundation for a new generation of global circulation models with kilometer horizontal scales.
-
Keywords:
-
Source:Journal of Advances in Modeling Earth Systems, 13(1)
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY-NC-ND
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: