i
The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study
-
2020
-
-
Source: Atmos. Chem. Phys., 20, 8807–8826, 2020
Details:
-
Journal Title:Atmospheric Chemistry and Physics
-
Personal Author:
-
NOAA Program & Office:
-
Description:Reactive nitrogen (Nr, defined as all nitrogen-containing compounds except for N2 and N2O) is one of the most important classes of compounds emitted from wildfire, as Nr impacts both atmospheric oxidation processes and particle formation chemistry. In addition, several Nr compounds can contribute to health impacts from wildfires. Understanding the impacts of wildfire on the atmosphere requires a thorough description of Nr emissions. Total reactive nitrogen was measured by catalytic conversion to NO and detection by NO–O3 chemiluminescence together with individual Nr species during a series of laboratory fires of fuels characteristic of western US wildfires, conducted as part of the FIREX Fire Lab 2016 study. Data from 75 stack fires were analyzed to examine the systematics of nitrogen emissions. The measured Nr ∕ total-carbon ratios averaged 0.37 % for fuels characteristic of western North America, and these gas-phase emissions were compared with fuel and residue N∕C ratios and mass to estimate that a mean (±SD) of 0.68 (±0.14) of fuel nitrogen was emitted as N2 and N2O. The Nr detected as speciated individual compounds included the following: nitric oxide (NO), nitrogen dioxide (NO2), nitrous acid (HONO), isocyanic acid (HNCO), hydrogen cyanide (HCN), ammonia (NH3), and 44 nitrogen-containing volatile organic compounds (NVOCs). The sum of these measured individual Nr compounds averaged 84.8 (±9.8) % relative to the total Nr, and much of the 15.2 % “unaccounted” Nr is expected to be particle-bound species, not included in this analysis.
-
Keywords:
-
Source:Atmos. Chem. Phys., 20, 8807–8826, 2020
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: