A Novel Approach to Estimating Time-Averaged Volcanic SO2 Fluxes from Infrared Satellite Measurements
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Novel Approach to Estimating Time-Averaged Volcanic SO2 Fluxes from Infrared Satellite Measurements

Filetype[PDF-10.61 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Long-term continuous time series of SO2 emissions are considered critical elements of both volcano monitoring and basic research into processes within magmatic systems. One highly successful framework for computing these fluxes involves reconstructing a representative time-averaged SO2 plume from which to estimate the SO2 source flux. Previous methods within this framework have used ancillary wind datasets from reanalysis or numerical weather prediction (NWP) to construct the mean plume and then again as a constrained parameter in the fitting. Additionally, traditional SO2 datasets from ultraviolet (UV) sensors lack altitude information, which must be assumed, to correctly calibrate the SO2 data and to capture the appropriate NWP wind level which can be a significant source of error. We have made novel modifications to this framework which do not rely on prior knowledge of the winds and therefore do not inherit errors associated with NWP winds. To perform the plume rotation, we modify a rudimentary computer vision algorithm designed for object detection in medical imaging to detect plume-like objects in gridded SO2 data. We then fit a solution to the general time-averaged dispersion of SO2 from a point source. We demonstrate these techniques using SO2 data generated by a newly developed probabilistic layer height and column loading algorithm designed for the Cross-track Infrared Sounder (CrIS), a hyperspectral infrared sensor aboard the Joint Polar Satellite System’s Suomi-NPP and NOAA-20 satellites. This SO2 data source is best suited to flux estimates at high-latitude volcanoes and at low-latitude, but high-altitude volcanoes. Of particular importance, IR SO2 data can fill an important data gap in the UV-based record: estimating SO2 emissions from high-latitude volcanoes through the polar winters when there is insufficient solar backscatter for UV sensors to be used.
  • Keywords:
  • Source:
    Remote Sensing, 13(5)
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1