Using Drifter Velocity Measurements to Assess and Constrain Coarse-Resolution Ocean Models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Using Drifter Velocity Measurements to Assess and Constrain Coarse-Resolution Ocean Models

Filetype[PDF-3.05 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Description:
    Properly fitting ocean models to observations is crucial for improving model performance and understanding ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable information about upper-ocean circulation and air–sea fluxes on various space and time scales. This study explores whether GDP measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an example. To address this problem, a careful examination of velocity data errors is required. Comparisons between an ECCO model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-Time (OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations. Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are considered. Given the estimated model–data differences, errors, and signal-to-noise ratios, our results indicate that constraining ocean-state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circulation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 38(4)
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.21