i
Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion
-
2019
-
-
Source: PNAS 116 (29) 14479-14484; https://doi.org/10.1073/pnas.1900613116
Details:
-
Journal Title:Proceedings of the National Academy of Sciences of the United States of America
-
Personal Author:
-
NOAA Program & Office:
-
Description:Bromine atoms play a central role in atmospheric reactive halogen chemistry, depleting ozone and elemental mercury, thereby enhancing deposition of toxic mercury, particularly in the Arctic near-surface troposphere. However, direct bromine atom measurements have been missing to date, due to the lack of analytical capability with sufficient sensitivity for ambient measurements. Here we present direct atmospheric bromine atom measurements, conducted in the springtime Arctic. Measured bromine atom levels reached 14 parts per trillion (ppt, pmol mol(-1); 4.2 x 10(8) atoms per cm(-3)) and were up to 3-10 times higher than estimates using previous indirect measurements not considering the critical role of molecular bromine. Observed ozone and elemental mercury depletion rates are quantitatively explained by the measured bromine atoms, providing field validation of highly uncertain mercury chemistry. Following complete ozone depletion, elevated bromine concentrations are sustained by photochemical snowpack emissions of molecular bromine and nitrogen oxides, resulting in continued atmospheric mercury depletion. This study provides a breakthrough in quantitatively constraining bromine chemistry in the polar atmosphere, where this chemistry connects the rapidly changing surface to pollutant fate.
-
Keywords:
-
Source:PNAS 116 (29) 14479-14484; https://doi.org/10.1073/pnas.1900613116
-
DOI:
-
Pubmed ID:31253702
-
Pubmed Central ID:PMC6642345
-
Document Type:
-
Rights Information:Other
-
Compliance:PMC
-
Main Document Checksum:
-
Download URL:
-
File Type: