U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Asymmetric air-sea heat flux response and ocean impact to synoptic-scale atmospheric disturbances observed at JKEO and KEO buoys



Details

  • Journal Title:
    Scientific Reports
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study aims to identify patterns of surface heat fluxes, and corresponding surface ocean responses, associated with synoptic-scale atmospheric events and their modulation on seasonal time scales. In particular, northerly and southerly wind events associated with atmospheric disturbances were analyzed using high-temporal resolution time-series data from two moored buoys (JKEO: 2007–2010 and KEO: 2004–2019) north and south of the Kuroshio Extension current. Although each synoptic-scale wind event generally impacted both sites, the composite surface heat flux was larger at the northern site, especially for northerly events. Both types of wind events were observed throughout the year, with a minimum during June-July–August. Northerly wind events tended to be accompanied by lowered air-temperature, while southerly events tended to have elevated air-temperature relative to the previous three days. The resulting anomalous surface heat loss was asymmetric, with larger changes in northerly events compared to the southerly events. A large and significant ocean response of − 0.28 to − 0.46 K (p-value < 0.05) in SST was confirmed only for northerly events in spring–summer at the northern site, while smaller changes were found at the southern site. The results of this study suggest that sub-monthly air-sea interactions may affect seasonal variability and potentially climate change over longer timescales.
  • Keywords:
  • Source:
    Scientific Reports, 11(469)
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:8c62990a55bb954bf720f4ac4e8317af93db9aaecdf92478ffde053749fdc02b
  • Download URL:
  • File Type:
    Filetype[PDF - 1.23 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.