Quantifying Degradative Loss of Terrigenous Organic Carbon in Surface Sediments Across the Laptev and East Siberian Sea
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Quantifying Degradative Loss of Terrigenous Organic Carbon in Surface Sediments Across the Laptev and East Siberian Sea

Filetype[PDF-6.53 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Global Biogeochemical Cycles
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Ongoing permafrost thaw in the Arctic may remobilize large amounts of old organic matter. Upon transport to the Siberian shelf seas, this material may be degraded and released to the atmosphere, exported off‐shelf, or buried in the sediments. While our understanding of the fate of permafrost‐derived organic matter in shelf waters is improving, poor constraints remain regarding degradation in sediments. Here we use an extensive data set of organic carbon concentrations and isotopes (n = 109) to inventory terrigenous organic carbon (terrOC) in surficial sediments of the Laptev and East Siberian Seas (LS + ESS). Of these ~2.7 Tg terrOC about 55% appear resistant to degradation on a millennial timescale. A first‐order degradation rate constant of 1.5 kyr−1 is derived by combining a previously established relationship between water depth and cross‐shelf sediment‐terrOC transport time with mineral‐associated terrOC loadings. This yields a terrOC degradation flux of ~1.7 Gg/year from surficial sediments during cross‐shelf transport, which is orders of magnitude lower than earlier estimates for degradation fluxes of dissolved and particulate terrOC in the water column of the LS + ESS. The difference is mainly due to the low degradation rate constant of sedimentary terrOC, likely caused by a combination of factors: (i) the lower availability of oxygen in the sediments compared to fully oxygenated waters, (ii) the stabilizing role of terrOC‐mineral associations, and (iii) the higher proportion of material that is intrinsically recalcitrant due to its chemical/molecular structure in sediments. Sequestration of permafrost‐released terrOC in shelf sediments may thereby attenuate the otherwise expected permafrost carbon‐climate feedback.
  • Keywords:
  • Source:
    Global Biogeochemical Cycles 33(1): 85-99, 2019
  • DOI:
  • Pubmed Central ID:
    PMC31007382
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    PMC
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1