The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Detecting Beam Blockage in Radar-Based Precipitation Estimates
-
2017
-
Source: Journal of Atmospheric and Oceanic Technology, 34(7), 1407-1422
Details:
-
Journal Title:Journal of Atmospheric and Oceanic Technology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Gridded radar-based quantitative precipitation estimates (QPEs) are potentially ideal inputs for hydrological modeling and monitoring because of their high spatiotemporal resolution. Beam blockage is a common type of bias in radar QPEs related to the blockage of the radar beam by an obstruction, such as topography or tall buildings. This leads to a diminishment in the power of the transmitted beam beyond the range of obstruction and a systematic underestimation of reflectivity return to the radar site. A new spatial analysis technique for objectively identifying regions in which precipitation estimates are contaminated by beam blockage was developed. The methodology requires only a long-term precipitation climatology with no prerequisite knowledge of topography or known obstructions needed. For each radar domain, the QPEs are normalized by climatology and a low-pass Fourier series fit captures the expected precipitation as a function of azimuth angle. Beam blockage signatures are identified as radially coherent regions with normalized values that are systematically lower than the Fourier fit. Precipitation estimates sufficiently affected by beam blockage can be replaced by values estimated using neighboring unblocked estimates. The methodology is applied to the correction of the National Weather Service radar-based QPE dataset, whose estimates originate from the NEXRAD network in the central and eastern United States. The methodology is flexible enough to be useful for most radar installations and geographical regions with at least a few years of data.
-
Keywords:
-
Source:Journal of Atmospheric and Oceanic Technology, 34(7), 1407-1422
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: