The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Intermittency in Precipitation: Duration, Frequency, Intensity, and Amounts Using Hourly Data
-
2017
-
Source: J. Hydrometeor. (2017) 18 (5): 1393–1412
Details:
-
Journal Title:Journal of Hydrometeorology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Intermittency is a core characteristic of precipitation, not well described by data and very poorly modeled. Detailed analyses are made of near-global gridded (about 1°) hourly or 3-hourly precipitation rates from two updated observational datasets [3-hourly TRMM 3B42, version 7, and hourly CMORPH, version 1.0, bias corrected (CRT)] and from special runs of CESM from January 1998 to December 2013 to obtain hourly values. The analyses explore the intermittency of precipitation: the frequency, intensity, duration, and amounts. A comparison is made for all products using several metrics with a focus on the duration of events, and a new metric is proposed based on the ratio of the frequency of precipitation at certain rates (0.2–2 mm h−1) for hourly versus 3-hourly versus daily data. For all seasons and rain rates, TRMM values are similar in pattern to CMORPH, but durations are about 80%–85%. It is mainly over land in the monsoons that CMORPH exceeds TRMM rain durations. Observed duration of precipitation events in CMORPH over oceans are 12–15 h in the tropics and subtropics, much less than the ~20 h for CESM. Hence, the observational results differ somewhat but both are considerably different from the model, which has too much precipitation overall, and it precipitates far too often at low rates and not enough for intense rates, with the divide about 1–2 mm h−1. There is a need to properly represent precipitation phenomena and processes either explicitly or implicitly (parameterized).
-
Keywords:
-
Source:J. Hydrometeor. (2017) 18 (5): 1393–1412
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: