A Phylogenetic and Functional Perspective on Volatile Organic Compound Production by Actinobacteria
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Phylogenetic and Functional Perspective on Volatile Organic Compound Production by Actinobacteria

Filetype[PDF-1.22 MB]



Details:

  • Journal Title:
    Msystems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Soil microbes produce an immense diversity of metabolites, including volatile organic compounds (VOCs), which can shape the structure and function of microbial communities. VOCs mediate a multitude of microbe-microbe interactions, including antagonism. Despite their importance, the diversity and functional relevance of most microbial volatiles remain uncharacterized. We assembled a taxonomically diverse collection of 48 Actinobacteria isolated from soil and airborne dust and surveyed the VOCs produced by these strains on two different medium types in vitro using gas chromatography-mass spectrometry (GC-MS). We detected 126 distinct VOCs and structurally identified approximately 20% of these compounds, which were predominately C1 to C5 hetero-VOCs, including (oxygenated) alcohols, ketones, esters, and nitrogen- and sulfur-containing compounds. Each strain produced a unique VOC profile. While the most common VOCs were likely by-products of primary metabolism, most of the VOCs were strain specific. We observed a strong taxonomic and phylogenetic signal for VOC profiles, suggesting their role in finer-scale patterns of ecological diversity. Finally, we investigated the functional potential of these VOCs by assessing their effects on growth rates of both pathogenic and nonpathogenic pseudomonad strains. We identified sets of VOCs that correlated with growth inhibition and stimulation, information that may facilitate the development of microbial VOC-based pathogen control strategies.
  • Keywords:
  • Source:
    mSystems 4:e00295-18.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1