Unstructured-Mesh Terrain Analysis and Incident Solar Radiation for Continuous Hydrologic Modeling in Mountain Watersheds
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Unstructured-Mesh Terrain Analysis and Incident Solar Radiation for Continuous Hydrologic Modeling in Mountain Watersheds

Filetype[PDF-23.72 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Water
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This article presents a methodology for estimating total incoming solar radiation from Triangular Irregular Network (TIN) topographic meshes. The algorithm also computes terrain slope degree and aspect (slope orientation) and accounts for self shading and cast shadows, sky view fractions for diffuse radiation, remote albedo and atmospheric backscattering, by using a vectorial approach within a topocentric coordinate system establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes its slope and aspect while spherical trigonometry allows computing a unit vector defining the position of the sun at each hour and day of the year. Sky view fraction, useful to determine diffuse and backscattered radiation, is computed for each TIN element at prescribed azimuth intervals targeting the steepest elevation gradient. A comparison between the sun zenith angle and the steepest gradient allows deciding whether or not the pivot element is shaded. Finally, remote albedo is computed from the sky view fraction complementary functions for observed albedo values of the surrounding terrain. The sensitivity of the different radiative components to seasonal changes in atmospheric transmissivitties and surrounding albedo is tested in a mountainous watershed in Wyoming. This methodology represents an improvement on the current algorithms to compute terrain and radiation values on unstructured-mesh terrain models. All terrain-related features (e.g., slope, aspect, sky view fraction) can be pre-computed and stored for easy access into a subsequent, progressive-in-time, numerical simulation.
  • Keywords:
  • Source:
    Water, 10(4), 1-19
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1