How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections

Filetype[PDF-7.27 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Climate Dynamics
  • Description:
    The anticyclonic high-pressure systems over the southern-hemisphere, subtropical oceans have a significant influence on regional climate. Previous studies of how these subtropical anticyclones will change under global warming have focused on austral summer while the winter season has remained largely uninvestigated, together with the extent to which the dominant mechanisms proposed to explain the multi-model-mean changes similarly explain the inter-model spread in projections. This study addresses these gaps by focusing on the mechanisms that drive the spread in projected future changes across the Coupled Model Intercomparison Project Phase 5 and 6 archives during both the summer and winter seasons. The southern hemisphere anticyclones intensify in strength at their center and poleward flank during both seasons in the future projections analyzed. The inter-model spread in projected local diabatic heating changes accounts for a considerable amount of the inter-model spread in the response of the South Pacific anticyclone during both seasons. However, model differences in projected zonal-mean tropospheric static stability changes, which in turn influence baroclinic eddy growth, are most influential in determining the often-strong increases in sea level pressure seen along the poleward flank of all the anticyclones during both seasons. Increased zonal-mean tropospheric static stability over the subtropics is consistent with the poleward shift in Hadley cell edge and zonal-mean sea level pressure increases. The results suggest that differences in the extent of tropical-upper-tropospheric and subtropical-lower-tropospheric warming in the southern hemisphere, via their influence on tropospheric static stability, will largely determine the fate of the anticyclones over the coming century.
  • Source:
    Climate Dynamics, 55(3), 703-718
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    PMC
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26