The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Ecological Water Stress under Projected Climate Change across Hydroclimate Gradients in the North-Central United States
-
2019
-
Source: Journal of Applied Meteorology and Climatology, 58(9), 2103-2114
Details:
-
Journal Title:Journal of Applied Meteorology and Climatology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Water balance influences the distribution, abundance, and diversity of plant species across Earth’s terrestrial system. In this study, we examine changes in the water balance and, consequently, the dryland extent across eight ecoregions of the north-central United States by quantifying changes in the growing season (May–September) moisture index (MI) by 2071–99, relative to 1980–2005, under three high-resolution (~4 km) downscaled climate projections (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) of high-emission scenarios (RCP8.5). We find that all ecoregions are projected to become drier as based on significant decreases in MI, except four ecoregions under CNRM-CM5, which projects relatively more moderate warming and much greater increases in precipitation relative to the other two projections. The mean projected MI across the entire study area changes by from +4% to −33%. The proportion of dryland (MI < 0.65) is projected to increase under all projections, but more significantly under the warmer and drier projections represented by CCSM4 and IPSL-CM5A-MR; these two projections also show the largest spatial increases in the arid (33%–53%) and hyperarid (135%–180%) dryland classes and the greatest decrease in the dry subhumid (from −56% to −88%) dryland class. Among the ecoregions, those in the semiarid class have the highest increase in potential evapotranspiration, those in the nondryland and dry subhumid class have the largest decrease in MI, and those in the dry subhumid class have the greatest increase in dryland extent. These changes are expected to have important implications for agriculture, ecological function, biodiversity, vegetation dynamics, and hydrological budget.
-
Keywords:
-
Source:Journal of Applied Meteorology and Climatology, 58(9), 2103-2114
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: