The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Saxitoxin Poisoning in Green Turtles (Chelonia mydas) Linked to Scavenging on Mass Mortality of Caribbean Sharpnose Puffer Fish (Canthigaster rostrata-Tetraodontidae)
-
2019
-
Source: Front Vet Sci. 2019 Dec 17;6:466.
Details:
-
Journal Title:Frontiers in Veterinary Science
-
Personal Author:
-
NOAA Program & Office:
-
Description:Fish within the family Tetraodontidae are potential sources of both endogenous tetrodotoxins (TTXs) and dietary derived saxitoxins (STXs). Ingestion of fish tissues containing these toxins by other vertebrates can lead to severe illness and death. The Caribbean sharpnose puffer (Canthigaster rostrata) is a widespread tetraodontid species within the western Atlantic. Mass settlement of juveniles into foraging habitats have been associated with large-scale puffer fish mortality events. In 2013, 2014, and 2017, puffer mortality events on the southern Caribbean coast of Costa Rica were also associated with strandings of green turtles (Chelonia mydas) found to have fed on C. rostrata. Stranded sea turtles were found dead without apparent cause or alive with severe neurological signs that resolved during short periods of captivity. Puffer fish and turtle organ samples were analyzed for both TTXs and STXs. Concentrations of TTXs were extremely low in the fish (0.5-0.7 μg/g) and undetectable in turtle stomach contents. However, concentrations of STXs in whole fish (16.6-47.5 μg STX-eq/g) exceeded the 0.8 μg STX-eq/g human seafood safety threshold for STXs by orders of magnitude. Saxitoxins were also detected in samples of stomach contents (ingested fish), brain, lung, kidney, and serum from three affected turtles. Study results indicate that saxitoxicosis resulting from opportunistic foraging on C. rostrata during fish mortality events may be a significant factor in episodic stranding of green sea turtles in this region.
-
Keywords:
-
Source:Front Vet Sci. 2019 Dec 17;6:466.
-
DOI:
-
Pubmed ID:31921922
-
Pubmed Central ID:PMC6928104
-
Document Type:
-
Rights Information:CC BY
-
Compliance:PMC
-
Main Document Checksum:
-
Download URL:
-
File Type: