Enhancing the Structure of the WRF-Hydro Hydrologic Model for Semiarid Environments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Enhancing the Structure of the WRF-Hydro Hydrologic Model for Semiarid Environments

Filetype[PDF-3.60 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Description:
    In August 2016, the National Weather Service Office of Water Prediction (NWS/OWP) of the National Oceanic and Atmospheric Administration (NOAA) implemented the operational National Water Model (NWM) to simulate and forecast streamflow, soil moisture, and other model states throughout the contiguous United States. Based on the architecture of the WRF-Hydro hydrologic model, the NWM does not currently resolve channel infiltration, an important component of the water balance of the semiarid western United States. Here, we demonstrate the benefit of implementing a conceptual channel infiltration function (from the KINEROS2 semidistributed hydrologic model) into the WRF-Hydro model architecture, configured as NWM v1.1. After calibration, the updated WRF-Hydro model exhibits reduced streamflow errors for the Walnut Gulch Experimental Watershed (WGEW) and the Babocomari River in southeast Arizona. Model calibration was performed using NLDAS-2 atmospheric forcing, available from the NOAA National Centers for Environmental Prediction (NCEP), paired with precipitation forcing from NLDAS-2, NCEP Stage IV, or local gauge precipitation. Including channel infiltration within WRF-Hydro results in a physically realistic hydrologic response in the WGEW, when the model is forced with high-resolution, gauge-based precipitation in lieu of a national product. The value of accounting for channel loss is also demonstrated in the Babocomari basin, where the drainage area is greater and the cumulative effect of channel infiltration is more important. Accounting for channel infiltration loss thus improves the streamflow behavior simulated by the calibrated model and reduces evapotranspiration bias when gauge precipitation is used as forcing. However, calibration also results in increased high soil moisture bias, which is likely due to underlying limitations of the NWM structure and calibration methodology.
  • Source:
    Journal of Hydrometeorology, 20(4), 691-714
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.23