VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science

Filetype[PDF-10.79 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Visualization is an essential tool for analysis of data and communication of findings in the sciences, and the Earth System Sciences (ESS) are no exception. However, within ESS, specialized visualization requirements and data models, particularly for those data arising from numerical models, often make general purpose visualization packages difficult, if not impossible, to use effectively. This paper presents VAPOR: a domain-specific visualization package that targets the specialized needs of ESS modelers, particularly those working in research settings where highly-interactive exploratory visualization is beneficial. We specifically describe VAPOR’s ability to handle ESS simulation data from a wide variety of numerical models, as well as a multi-resolution representation that enables interactive visualization on very large data while using only commodity computing resources. We also describe VAPOR’s visualization capabilities, paying particular attention to features for geo-referenced data and advanced rendering algorithms suitable for time-varying, 3D data. Finally, we illustrate VAPOR’s utility in the study of a numerically- simulated tornado. Our results demonstrate both ease-of-use and the rich capabilities of VAPOR in such a use case.
  • Keywords:
  • Source:
    Atmosphere 2019, 10(9), 488
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1