i
Evaluation of MJO Predictive Skill in Multiphysics and Multimodel Global Ensembles
-
2017
-
-
Source: Mon. Wea. Rev. (2017) 145 (7): 2555–2574.
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:Monthlong hindcasts of the Madden–Julian oscillation (MJO) from the atmospheric Flow-following Icosahedral Model coupled with an icosahedral-grid version of the Hybrid Coordinate Ocean Model (FIM-iHYCOM), and from the coupled Climate Forecast System, version 2 (CFSv2), are evaluated over the 12-yr period 1999–2010. Two sets of FIM-iHYCOM hindcasts are run to test the impact of using Grell–Freitas (FIM-CGF) versus simplified Arakawa–Schubert (FIM-SAS) deep convection parameterizations. Each hindcast set consists of four time-lagged ensemble members initialized weekly every 6 h from 1200 UTC Tuesday to 0600 UTC Wednesday.
The ensemble means of FIM-CGF, FIM-SAS, and CFSv2 produce skillful forecasts of a variant of the Real-time Multivariate MJO (RMM) index out to 19, 17, and 17 days, respectively; this is consistent with FIM-CGF having the lowest root-mean-square errors (RMSEs) for zonal winds at both 850 and 200 hPa. FIM-CGF and CFSv2 exhibit similar RMSEs in RMM, and their multimodel ensemble mean extends skillful RMM prediction out to 21 days. Conversely, adding FIM-SAS—with much higher RMSEs—to CFSv2 (as a multimodel ensemble) or FIM-CGF (as a multiphysics ensemble) yields either little benefit, or even a degradation, compared to the better single-model ensemble mean. This suggests that multiphysics/multimodel ensemble mean forecasts may only add value when the individual models possess similar skill and error. An atmosphere-only version of FIM-CGF loses skill after 11 days, highlighting the importance of ocean coupling. Further examination reveals some sensitivity in skill and error metrics to the choice of MJO index.
-
Keywords:
-
Source:Mon. Wea. Rev. (2017) 145 (7): 2555–2574.
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: