U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

The Effect of Oxygen on Organic Haze Properties



Details

  • Journal Title:
    The Astrophysical Journal Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Atmospheric organic hazes are present on many planetary bodies, possibly including the ancient Earth and exoplanets, and can greatly influence surface and atmospheric properties. Here we examine the physical and optical properties of organic hazes produced with molecular nitrogen, methane, carbon dioxide, and increasing amounts of molecular oxygen, and compare them to hazes produced without added oxygen. As molecular oxygen is included in increasing amounts from 0 to 200 ppmv, the mass loading of haze produced decreases nonlinearly. With 200 ppmv molecular oxygen, the mass loading of particles produced is on the order of the amount of organic aerosol in modern Earth's atmosphere, suggesting that while not a thick organic haze, haze particles produced with 200 ppmv molecular oxygen could still influence planetary climates. Additionally, the hazes produced with increasing amounts of oxygen become increasingly oxidized and the densities increase. For hazes produced with 0, 2 and 20 ppmv oxygen, the densities were found to be 0.94, 1.03 and 1.12 g cm−3, respectively. Moreover, the hazes produced with 0, 2, and 20 ppmv oxygen are found to have real refractive indices of n = 1.58 ± 0.04, 1.53 ± 0.03 and 1.67 ± 0.03, respectively, and imaginary refractive indices of $k={0.001}_{-0.001}^{+0.002}$, 0.002 ± 0.002 and ${0.002}_{-0.002}^{+0.003}$, respectively. These k values demonstrate that the particles formed with oxygen have no absorption within our experimental error, and could result in a light scattering layer in an oxygen-containing atmosphere.
  • Keywords:
  • Source:
    The Astrophysical Journal Letters 859(1), 2018
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:bf6e7b1d6bbc7927383924964948a7f130e52da25161d3b0e34287a28d745322739abf2082c6f60cf94abf2abac8765b01c2692a2383ce46b5609cda040d1d38
  • Download URL:
  • File Type:
    Filetype[PDF - 916.99 KB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.