Investigations into the use of multi-species measurements for source apportionment of the Indianapolis fossil fuel CO2 signal
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Investigations into the use of multi-species measurements for source apportionment of the Indianapolis fossil fuel CO2 signal

Filetype[PDF-7.65 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Elementa: Science of the Anthropocene
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Current bottom up estimates of CO2 emission fluxes are based on a mixture of direct and indirect flux estimates relying to varying degrees on regulatory or self-reported data. Hence, it is important to use additional, independent information to assess biases and lower the flux uncertainty. We explore the use of a self-organizing map (SOM) as a tool to use multi-species observations to partition fossil fuel CO2 (CO2ff) emissions by economic source sector. We use the Indianapolis Flux experiment (INFLUX) multi-species observations to provide constraints on the types of relationships we can expect to see, and show from the observations and existing knowledge of likely sources for these species that relationships do exist but can be complex. An Observing System Simulation Experiment (OSSE) is then created to test, in a pseudodata framework, the abilities and limitations of using an SOM to accurately attribute atmospheric tracers to their source sector. These tests are conducted for a variety of emission scenarios, and make use of the corresponding high-resolution footprints for the pseudo-measurements. We show here that the attribution of sector-specific emissions to measured trace gases cannot be addressed by investigating the atmospheric trace gas measurements alone. We conclude that additional a priori information such as inventories of sector-specific trace gases are required to evaluate sector-level emissions using atmospheric methods, to overcome the challenge of the spatial overlap of nearly every predefined source sector. Our OSSE additionally allows us to demonstrate that increasing the (already high) data density cannot solve the co-localization problem.
  • Keywords:
  • Source:
    Elem Sci Anth, 6(1), p.21 2018
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1