U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Middle East and Southwest Asia Daily Precipitation Characteristics Associated with the Madden–Julian Oscillation during Boreal Winter



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The spatial and temporal evolution of Middle East and southwest Asia (MESW) precipitation characteristics and the associated atmospheric circulation during times in which tropical eastern Indian Ocean precipitation is either enhanced or reduced associated with the Madden–Julian oscillation (MJO) is assessed. Using multiple estimates of both the observed precipitation and the MJO during 1981–2016, the evolution of MESW precipitation characteristics throughout November–April is examined in terms of monthly precipitation accumulation on precipitation days, the number of precipitation days, and the number of extreme precipitation days. MJO phases 2–4, during which eastern Indian Ocean precipitation is enhanced, and MJO phases 6–8, during which eastern Indian Ocean precipitation is reduced, are related, with significant decreases and increases in the number of precipitation days across MESW, respectively. The patterns of precipitation-day changes between MJO phases undergo noteworthy spatial and temporal evolutions across the boreal cold season that are influenced by the interaction between Rossby wave forcing by the MJO and seasonal changes in both the upper-level jet and moisture over the region. During December–January, the changes in precipitation days are found primarily over northern MESW, while during February–March, the changes in precipitation days are found primarily over southern MESW. Although the results identify an important sensitivity in the number of precipitation days over the MESW related to the MJO, the same sensitivity is not apparent in terms of the number of extreme precipitation days and, in particular, the amount of precipitation on a precipitation day.
  • Keywords:
  • Source:
    J. Climate (2018) 31 (21): 8843–8860.
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:9e6942b4f8b3599984d8f475bbfdf4010d77fc2fe9c2a2a9528c3c8b156362db4964b71147c71056c08dd0e91758650b90e3c09eb31cd28bbf54b4ac18826e9b
  • Download URL:
  • File Type:
    Filetype[PDF - 8.95 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.