Compositional and Mineralogical Effects on Ice Nucleation Activity of Volcanic Ash
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Compositional and Mineralogical Effects on Ice Nucleation Activity of Volcanic Ash

Filetype[PDF-830.89 KB]


  • Journal Title:
  • Description:
    Volcanic ash produced during explosive eruptions may serve as ice nuclei in the atmosphere, contributing to the occurrence of volcanic lightning due to tribocharging from ice–ice or ice–ash collisions. Here, different ash samples were tested using deposition-mode and immersion-mode ice nucleation experiments. Results show that bulk composition and mineral abundance have no measurable effect on depositional freezing at the temperatures tested, as all samples have similar ice saturation ratios. In the immersion mode, there is a strong positive correlation between K2O content and ice nucleation site density at −25 °C and a strong negative correlation between MnO and TiO2 content at temperatures from −35 to −30 °C. The most efficient sample in the immersion mode has the highest surface area, smallest average grain size, highest K2O content, and lowest MnO content. These results indicate that although ash abundance—which creates more available surface area for nucleation—has a significant effect on immersion-mode freezing, composition may also contribute. Consequently, highly explosive eruptions of compositionally evolved magmas create the necessary parameters to promote ice nucleation on grain surfaces, which permits tribocharging due to ice–ice or ice–ash collisions, and contribute to the frequent occurrence of volcanic lightning within the eruptive column and plume during these events.
  • Source:
    Atmosphere 2018, 9(7), 238
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

You May Also Like

Checkout today's featured content at

Version 3.24