U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Linearity of Outgoing Longwave Radiation: From an Atmospheric Column to Global Climate Models



Details

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The linearity of global-mean outgoing longwave radiation (OLR) with surface temperature is a basic assumption in climate dynamics. This linearity manifests in global climate models, which robustly produce a global-mean longwave clear-sky (LWCS) feedback of 1.9 W/m2/K, consistent with idealized single-column models (Koll & Cronin, 2018, https//:doi.org/10.1073/pnas.1809868115). However, there is considerable spatial variability in the LWCS feedback, including negative values over tropical oceans (known as the “super-greenhouse effect”) which are compensated for by larger values in the subtropics/extratropics. Therefore, it is unclear how the idealized single-column results are relevant for the global-mean LWCS feedback in comprehensive climate models. Here we show with a simple analytical theory and model output that the compensation of this spatial variability to produce a robust global-mean feedback can be explained by two facts: (1) When conditioned upon free-tropospheric column relative humidity (RH), the LWCS feedback is independent of RH, and (2) the global histogram of free-tropospheric column RH is largely invariant under warming.
  • Keywords:
  • Source:
    Geophysical Research Letters, 47(11)
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:24fa7d0543d8460625da50b508e95341ff5ea7cb2e61b8885234ed4f5b7b6b9e0fe9feb9731620ca535e96faa97976cb12ae84067fa336647c7a824818013d08
  • Download URL:
  • File Type:
    Filetype[PDF - 4.05 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.