Lithospheric density models reveal evidence for Cenozoic uplift of the Colorado Plateau and Great Plains by lower-crustal hydration
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Lithospheric density models reveal evidence for Cenozoic uplift of the Colorado Plateau and Great Plains by lower-crustal hydration

Filetype[PDF-3.49 MB]



Details:

  • Journal Title:
    Geosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Subduction at plate boundaries can have thermal, chemical, and physical impacts on broad regions of the continental interior, but these interactions are not as readily obvious as deformation near the continental margin. Such cryptic alteration has produced surface uplift in the Colorado Plateau and western Great Plains of North America, which have risen—largely undeformed—1.6 and 1.3 km, respectively, relative to the eastern Great Plains during the Cenozoic. Accumulation of Cretaceous–Cenozoic sediments accounts for only 300 m of uplift of the Colorado Plateau and 400 m of the western Great Plains, leaving 1.3 km and 0.9 km, respectively, unexplained. To determine the physical causes of this enigmatic epeirogeny, we derived three-dimensional (3-D) lithospheric density models from seismic velocity, gravity, topography, and heat-flow data. Lower-crustal density decreases systematically westward across the Great Plains, accounting nearly perfectly for the remaining 900 m of uplift of the western Great Plains and the modern east-west topographic gradient. Lower-crustal dedensification beneath the Colorado Plateau accounts for a similar 900 m of uplift. Lower-crustal xenoliths in both regions show progressive hydration-induced retrogression of garnet-bearing assemblages with increasing modern elevation, and Th-Pb dating of the Colorado Plateau retrogression gives end-Cretaceous dates (xenoliths from the Great Plains have not yet been dated). We hypothesize that lower-crustal density variations—and much of the surface relief—in North America’s Proterozoic interior terranes reflect varying degrees of metasomatic retrogression, such as by fluids exsolved from the Farallon slab. The remaining 400 m of Colorado Plateau uplift is most plausibly due to elevated mantle temperature. We present thermal models that suggest that 25–70 km of Cenozoic lithospheric thinning can explain the modern elevation and density structure.
  • Keywords:
  • Source:
    Geosphere (2018) 14 (3): 1150–1164
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1