Assessment of MPAS variable resolution simulations in the grey-zone of convection against WRF model results and observations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Assessment of MPAS variable resolution simulations in the grey-zone of convection against WRF model results and observations

Filetype[PDF-11.56 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Climate Dynamics
  • Description:
    Regional weather forecasting models like the Weather Research and Forecasting (WRF) model allow for nested domains to save computational effort and provide detailed results for mesoscale weather phenomena. The sudden resolution change by nesting may cause artefacts in the model results. On the contrary, the novel global Model for Prediction Across Scales (MPAS) runs on Voronoi meshes that allow for smooth resolution transition towards the desired high resolution in the region of interest. This minimises the resolution-related artefacts, while still saving computational effort. We evaluate the MPAS model over Europe focussing on three mesoscale weather events: a synoptic gale over the North Sea, a föhn effect in Switzerland, and a case of organised convection with hail over the Netherlands. We use four different MPAS meshes (60 km global refined to-3 km (60– 3 km), analogous 30–3 km, 15–3 km, global 3 km) and compare their results to routine observations and a WRF setup with a single domain of 3 km grid spacing. We also discuss the computational requirements for the different MPAS meshes and the operational WRF setup. In general, the MPAS 3 km and WRF model results correspond to the observations. However, a global model at 3 km resolution as a replacement for WRF is not feasible for operational use. More importantly, all variable-resolution meshes employed in this study show comparable skills in short-term forecasting within the high-resolution area at considerably lower computational costs.
  • Source:
    Clim Dyn 55, 253–276 (2020)
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26