U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval



Details

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Ocean lidar attenuation and scattering parameters were derived from a high-spectral-resolution lidar (HSRL) using two different retrieval techniques. The first used the standard HSRL retrieval, and the second used only the total backscatter channel and a perturbation retrieval (PR). The motivation is to evaluate differences between the two techniques that would affect the decision of whether to use a simple backscatter lidar or a more complex HSRL in future applications. For the data set investigated, the attenuation coefficient from the PR was an average of 11% lower than that from the HSRL. The PR estimate of the scattering parameter decreased with depth relative to the HSRL estimate, although the overall bias was zero as a result of the calibration procedure. Near the surface, the coefficient of variability in both estimates of attenuation and in HSRL estimates of scattering were around 5%, but that in the PR estimate of scattering was over 10%. At greater depths, the variability increases for all of the profile parameters. The correlation between the two estimates of attenuation coefficient was 0.7. The correlation between scattering parameters was > 0.8 near the surface, but decreased to 0.4 at a depth of around 20 m. Overall, the PR performed better relative to the HSRL in offshore waters than in nearshore waters.
  • Keywords:
  • Source:
    Remote Sens. 2018, 10(12), 2003
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:ffc8349fbfb3dde77d8283963bda090090ee24ab5587479d1e000358d90fa21a1259fa415a918e5968911d51efb3c47cd7c43840ab45458d1f605ba48fb76509
  • Download URL:
  • File Type:
    Filetype[PDF - 7.41 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.