Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Diversity and temperature indirectly reduce CO2 concentrations in experimental freshwater communities
  • Published Date:
    2020
  • Source:
    Oecologia volume 192, pages515–527(2020)


Public Access Version Available on: January 01, 2021, 12:00 AM information icon
Please check back on the date listed above.
Details:
  • Description:
    Biodiversity loss and climate warming are occurring in concert, with potentially profound impacts on ecosystem functioning. We currently know very little about the combined effects of these changes on the links between the community structure, dynamics and the resulting in situ CO2 concentrations in freshwater ecosystems. Here we aimed to determine both individual and combined effects of temperature and non-resource diversity (species inedible for a given consumer) on CO2 concentration. Our analysis further aimed to establish both direct effects on CO2 concentrations and potential indirect effects that occur via changes to the phytoplankton and zooplankton biomasses. Our results showed that there were no interactive effects of changes in temperature and diversity on CO2 concentration in the water. Instead, independent increases in either temperature or non-resource diversity resulted in a substantial reduction in CO2 concentrations, particularly at the highest non-resource diversity. The effects of non-resource diversity and warming on CO2 were indirect, resulting largely from the positive impacts on total biomass of primary producers. Our study is the first to experimentally partition the impacts of temperature and diversity on the consumer–resource dynamics and associated changes to CO2 concentrations. It provides new mechanistic insights into the role of diverse plankton communities for ecosystem functioning and their importance in regulating CO2 dynamics under ongoing climate warming.
  • Pubmed ID:
    31950262
  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: