Locally Adaptive Smoothing with Markov Random Fields and Shrinkage Priors
-
2018
Details
-
Journal Title:Bayesian Analysis
-
Personal Author:
-
NOAA Program & Office:
-
Description:We present a locally adaptive nonparametric curve fitting method that operates within a fully Bayesian framework. This method uses shrinkage priors to induce sparsity in order-k differences in the latent trend function, providing a combination of local adaptation and global control. Using a scale mixture of normals representation of shrinkage priors, we make explicit connections between our method and kth order Gaussian Markov random field smoothing. We call the resulting processes shrinkage prior Markov random fields (SPMRFs). We use Hamiltonian Monte Carlo to approximate the posterior distribution of model parameters because this method provides superior performance in the presence of the high dimensionality and strong parameter correlations exhibited by our models. We compare the performance of three prior formulations using simulated data and find the horseshoe prior provides the best compromise between bias and precision. We apply SPMRF models to two benchmark data examples frequently used to test nonparametric methods. We find that this method is flexible enough to accommodate a variety of data generating models and offers the adaptive properties and computational tractability to make it a useful addition to the Bayesian nonparametric toolbox.
-
Source:Bayesian Anal. 2018 Mar;13(1):225-252.
-
DOI:
-
Pubmed ID:29755638
-
Pubmed Central ID:PMC5942601
-
Document Type:
-
Rights Information:CC BY
-
Compliance:PMC
-
Main Document Checksum:urn:sha-512:9e63bb268abc2f5808322284c20347bc10132b9d1d6a7238ab32c0dd63673d72c56c72d2d62fe2d5b8afc69d433ac914acfa83b37399558ce6477405841e1793
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
National Marine Fisheries Service (NMFS)