Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
i


Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes
  • Published Date:

    2018

  • Source:
    Proc Biol Sci. 2018 Oct 3;285(1888):20180915.
Filetype[PDF-8.78 MB]


This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes
Details:
  • Description:
    Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed ‘portfolio effects’, PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spatio-temporal model to multidecadal time series (1982–2015) for 20 bottom-associated fishes in seven marine ecosystems. For each ecosystem, we compute the reduction in variance over time in total biomass relative to its theoretical maximum if species and locations were perfectly correlated (total PE). We also compute the reduction in variance due to asynchrony among species at each location (species PE) or the reduction due to asynchrony among locations for each species (spatial PE). We specifically compute total, species and spatial PE in 10-year moving windows to detect changes over time. Our analyses revealed that spatial PE are stronger than species PE in six of seven ecosystems, and that ecosystems where species PE is constant over time can exhibit shifts in locations that strongly contribute to PE. We therefore recommend that spatial and total PE be monitored as ecosystem indicators representing risk exposure for human and natural consumers.
  • Pubmed Central ID:
    PMC6191698
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: