Evaluation of the Specific Attenuation Method for Radar-Based Quantitative Precipitation Estimation: Improvements and Practical Challenges
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Evaluation of the Specific Attenuation Method for Radar-Based Quantitative Precipitation Estimation: Improvements and Practical Challenges

Filetype[PDF-2.43 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study demonstrates an implementation of the prototype quantitative precipitation R estimation algorithm using specific attenuation A for S-band polarimetric radar. The performance of R(A) algorithm is assessed, compared to the conventional algorithm using radar reflectivity Z, at multiple temporal scales. Because the factor α, defined as the net ratio of A to specific differential phase, is a key parameter of the algorithm characterized by drop size distributions (e.g., differential reflectivity Zdr dependence on Z), the estimation equations of α and a proper number of Zdr–Z samples required for a reliable α estimation are examined. Based on the dynamic estimation of α, the event-based evaluation using hourly rain gauge observations reveals that the performance of R(A) is superior to that of R(Z), with better agreement and lower variability. Despite its superiority, the study finds that R(A) leads to quite consistent overestimations of about 10%–30%. It is demonstrated that the application of uniform α over the entire radar domain yields the observed uncertainty because of the heterogeneity of precipitation in the domain. A climatological range-dependent feature of R(A) and R(Z) is inspected in the multiyear evaluation at yearly scale using rain totals for April–October. While R(Z) exposes a systematic shift and overestimation, each of which arise from the radar miscalibration and bright band effects, R(A) combining with multiple R(Z) values for solid/mixed precipitation shows relatively robust performance without those effects. The immunity of R(A) to partial beam blockage (PBB) based on both qualitative and quantitative analyses is also verified. However, the capability of R(A) regarding PBB is limited by the presence of the melting layer and its application requirement for the total span of differential phase (e.g., 3°), which is another challenge for light rain.
  • Keywords:
  • Source:
    J. Hydrometeor. (2020) 21 (6): 1333–1347.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1