External and internal grouping characteristics of juvenile walleye pollock in the Eastern Bering Sea
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


External and internal grouping characteristics of juvenile walleye pollock in the Eastern Bering Sea

Filetype[PDF-2.79 MB]


  • Journal Title:
    Aquatic Living Resources
  • Description:
    Size and shape patterns of fish groups are collective outcomes of interactions among members. Consequently, group-level patterns are often affected when any member responds to changes in their internal state, external state, and environment. To determine how groups of fish respond to components of their physical and ecological environment, and whether the response is influenced by a component of their external state (i.e., fish age), we used a multibeam system to collect three-dimensional grouping characteristics of 5 age categories of juvenile walleye pollock (age 1, age 2, age 3, mixed ages 1 and 2, and mixed ages 2 and 3) across the eastern Bering Sea shelf over two consecutive years (2009–2010). Grouping data were expressed as metrics that described group size (length, height), shape (roundness, spread), internal structure (density, internal heterogeneity), and position (depth, distance above bottom). Physical data (water temperature measurements) were collected with temperature-depth probes, and ecological data (densities of predators and prey − adult walleye pollock and euphausiids, respectively) were collected with an EK60 vertical echosounder. Juvenile pollock maintained a relatively constant shape, size-dependent density (number fish/mean body length3), and internal horizontal heterogeneity among age categories and in the presence of predators and prey. There were changes to group structure in the face of local physical forcing. Groups tended to move towards the seafloor when bottom waters became warmer, and groups became vertically shorter, denser, and had more variation in horizontal internal density as group depth increased. These results are explored in relation to the value and limitations of using multibeam data to describe how external and internal group structure map onto environmental influences.
  • Source:
    Aquatic Living Resources, 32
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26