Recent Patterns in Lake Erie Phosphorus and Chlorophyll a Concentrations in Response to Changing Loads
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Recent Patterns in Lake Erie Phosphorus and Chlorophyll a Concentrations in Response to Changing Loads

Filetype[PDF-3.52 MB]



Details:

  • Journal Title:
    Environmental Science & Technology
  • Description:
    Despite the initial success of extensive efforts to reduce phosphorus (P) loading to Lake Erie as a part of the Great Lakes Water Quality Agreement, Lake Erie appears to be undergoing a re-eutrophication and it is plagued by harmful algal blooms. To offer insights into potential lake responses under differing Maumee River loads and reveal recent changes with time, we explored patterns in phosphorus and chlorophyll a data from 2008 to 2018 collected in western Lake Erie near the mouth of the Maumee River. We found high, but relatively stable Maumee River and lake concentrations of total P (TP) and soluble reactive P (SRP) with no discernable annual or seasonal patterns. Maumee spring TP load was not strongly related to lake TP, and lake SRP concentrations were positively but weakly related to SRP loads. Lake TP was a strong predictor of chlorophyll a, but the relationship was weaker at sites closer to the Maumee. These results highlight spatial differences both in P concentration and the relationship between TP and chlorophyll a, and these indicate that spring phosphorus loads are a weak algal biomass predictor in the portion of the western basin of Lake Erie represented by these sampling stations.
  • Source:
    Environmental Science & Technology, 54(2)
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.21