Time-Varying Emulator for Short and Long-Term Analysis of Coastal Flood Hazard Potential
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Time-Varying Emulator for Short and Long-Term Analysis of Coastal Flood Hazard Potential

Filetype[PDF-54.81 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Rising seas coupled with ever increasing coastal populations present the potential for significant social and economic loss in the 21st century. Relatively short records of the full multidimensional space contributing to total water level coastal flooding events (astronomic tides, sea level anomalies, storm surges, wave run-up, etc.) result in historical observations of only a small fraction of the possible range of conditions that could produce severe flooding. The Time-varying Emulator for Short- and Long-Term analysis of coastal flood hazard potential is presented here as a methodology capable of producing new iterations of the sea-state parameters associated with the present-day Pacific Ocean climate to simulate many synthetic extreme compound events. The emulator utilizes weather typing of fundamental climate drivers (sea surface temperatures, sea level pressures, etc.) to reduce complexity and produces new daily synoptic weather chronologies with an auto-regressive logistic model accounting for conditional dependencies on the El NiƱo Southern Oscillation, the Madden-Julian Oscillation, seasonality, and the prior two days of weather progression. Joint probabilities of sea-state parameters unique to simulated weather patterns are used to create new time series of the hypothetical components contributing to synthetic total water levels (swells from multiple directions coupled with water levels due to wind setup, temperature anomalies, and tides). The Time-varying Emulator for Short- and Long-Term analysis of coastal flood hazard potential reveals the importance of considering the multivariate nature of extreme coastal flooding, while progressing the ability to incorporate large-scale climate variability into site specific studies assessing hazards within the context of predicted climate change in the 21st century.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Oceans, 124(12)
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1