Revised Magmatic Source Models for the 2015 Eruption at Axial Seamount Including Estimates of Fault-Induced Deformation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Revised Magmatic Source Models for the 2015 Eruption at Axial Seamount Including Estimates of Fault-Induced Deformation

Filetype[PDF-17.83 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Solid Earth
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Axial Seamount is an active submarine volcano located at the intersection of the Cobb hot spot and the Juan de Fuca Ridge (45°57′N, 130°01′W). Bottom pressure recorders captured co-eruption subsidence of 2.4–3.2 m in 1998, 2011, and 2015, and campaign-style pressure surveys every 1–2 years have provided a long-term time series of inter-eruption re-inflation. The 2015 eruption occurred shortly after the Ocean Observatories Initiative (OOI) Cabled Array came online providing real-time seismic and deformation observations for the first time. Nooner and Chadwick (2016, https://doi.org/10.1126/science.aah4666) used the available vertical deformation data to model the 2015 eruption deformation source as a steeply dipping prolate-spheroid, approximating a high-melt zone or conduit beneath the eastern caldera wall. More recently, Levy et al. (2018, https://doi.org/10.1130/G39978.1) used OOI seismic data to estimate dip-slip motion along a pair of outward-dipping caldera ring faults. This fault motion complicates the deformation field by contributing up to several centimeters of vertical seafloor motion. In this study, fault-induced surface deformation was calculated from the slip estimates of Levy et al. (2018, https://doi.org/10.1130/G39978.1) then removed from vertical deformation data prior to model inversions. Removing fault motion resulted in an improved model fit with a new best-fitting deformation source located 2.11 km S64°W of the source of Nooner and Chadwick (2016, https://doi.org/10.1126/science.aah4666) with similar geometry. This result shows that ring fault motion can have a significant impact on surface deformation, and future modeling efforts need to consider the contribution of fault motion when estimating the location and geometry of subsurface magma movement at Axial Seamount.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Solid Earth, 125(4)
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1