Measuring and Modeling the Polarized Upwelling Radiance Distribution in Clear and Coastal Waters
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Measuring and Modeling the Polarized Upwelling Radiance Distribution in Clear and Coastal Waters

Filetype[PDF-3.46 MB]



Details:

  • Journal Title:
    Applied Sciences
  • Description:
    The upwelling spectral radiance distribution is polarized, and this polarization varies with the optical properties of the water body. Knowledge of the polarized, upwelling, bidirectional radiance distribution function (BRDF) is important for generating consistent, long-term data records for ocean color because the satellite sensors from which the data are derived are sensitive to polarization. In addition, various studies have indicated that measurement of the polarization of the radiance leaving the ocean can used to determine particle characteristics (Tonizzo et al., 2007; Ibrahim et al., 2016; Chami et al., 2001). Models for the unpolarized BRDF (Morel et al., 2002; Lee et al., 2011) have been validated (Voss et al., 2007; Gleason et al., 2012), but variations in the polarization of the upwelling radiance due to the sun angle, viewing geometry, dissolved material, and suspended particles have not been systematically documented. In this work, we simulated the upwelling radiance distribution using a Monte Carlo-based radiative transfer code and measured it using a set of fish-eye cameras with linear polarizing filters. The results of model-data comparisons from three field experiments in clear and turbid coastal conditions showed that the degree of linear polarization (DOLP) of the upwelling light field could be determined by the model with an absolute error of ±0.05 (or 5% when the DOLP was expressed in %). This agreement was achieved even with a fixed scattering Mueller matrix, but did require in situ measurements of the other inherent optical properties, e.g., scattering coefficient, absorption coefficient, etc. This underscores the difficulty that is likely to be encountered using the particle scattering Mueller matrix (as indicated through the remote measurement of the polarized radiance) to provide a signature relating to the properties of marine particles beyond the attenuation/absorption coefficient.
  • Source:
    Appl. Sci., 8(12), 1-17
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    PMC
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26