The Role of Convective Gustiness in Reducing Seasonal Precipitation Biases in the Tropical West Pacific
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Role of Convective Gustiness in Reducing Seasonal Precipitation Biases in the Tropical West Pacific

Filetype[PDF-1.33 MB]



Details:

  • Journal Title:
    Journal of Advances in Modeling Earth Systems
  • Description:
    Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation can be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.
  • Source:
    Journal of Advances in Modeling Systems 10(4), 961-970, 2018
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    PMC
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

You May Also Like