Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach

Filetype[PDF-4.46 MB]


  • Journal Title:
    Remote Sensing
  • Description:
    A variational inversion scheme is used to extract microwave emissivity spectra from brightness temperatures over a multitude of surface types. The scheme is called the Microwave Integrated Retrieval System and has been implemented operationally since 2007 at NOAA. This study focuses on the Advance Microwave Sounding Unit (AMSU)/MHS pair onboard the NOAA-18 platform, but the algorithm is applied routinely to multiple microwave sensors, including the Advanced Technology Microwave Sounder (ATMS) on Suomi-National Polar-orbiting Partnership (SNPP), Special Sensor Microwave Imager/Sounder (SSMI/S) on the Defense Meteorological Satellite Program (DMSP) flight units, as well as to the Global Precipitation Mission (GPM) Microwave Imager (GMI), to name a few. The emissivity spectrum retrieval is entirely based on a physical approach. To optimize the use of information content from the measurements, the emissivity is extracted simultaneously with other parameters impacting the measurements, namely, the vertical profiles of temperature, moisture and cloud, as well as the skin temperature and hydrometeor parameters when rain or ice are present. The final solution is therefore a consistent set of parameters that fit the measured brightness temperatures within the instrument noise level. No ancillary data are needed to perform this dynamic emissivity inversion. By allowing the emissivity to be part of the retrieved state vector, it becomes easy to handle the pixel-to-pixel variation in the emissivity over non-oceanic surfaces. This is particularly important in highly variable surface backgrounds. The retrieved emissivity spectrum by itself is of value (as a wetness index for instance), but it is also post-processed to determine surface geophysical parameters. Among the parameters retrieved from the emissivity using this approach are snow cover, snow water equivalent and effective grain size over snow-covered surfaces, sea-ice concentration and age from ice-covered ocean surfaces and wind speed over ocean surfaces. It could also be used to retrieve soil moisture and vegetation information from land surfaces. Accounting for the surface emissivity in the state vector has the added advantage of allowing an extension of the retrieval of some parameters over non-ocean surfaces. An example shown here relates to extending the total precipitable water over non-ocean surfaces and to a certain extent, the amount of suspended cloud. The study presents the methodology and performance of the emissivity retrieval and highlights a few examples of some of the emissivity-based products.
  • Source:
    Remote Sens. 10(5), 1-18
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26