On the Creation and Evolution of Small-Scale Low-Level Vorticity Anomalies during Tropical Cyclogenesis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

On the Creation and Evolution of Small-Scale Low-Level Vorticity Anomalies during Tropical Cyclogenesis

Filetype[PDF-3.98 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent numerical modeling and observational studies indicate the importance of vortical hot towers (VHTs) in the transformation of a tropical disturbance to a tropical depression. It has recently been recognized that convective-scale downdraft outflows that form within VHTs also preferentially develop positive vertical vorticity around their edges, which is considerably larger in magnitude than ambient values. During a numerical simulation of tropical cyclogenesis it is found that particularly strong low-level convectively induced vorticity anomalies (LCVAs) occasionally form as convection acts on the enhanced vorticity at the edges of cold pools. These features cycle about the larger-scale circulation and are associated with a coincident pressure depression and low-level wind intensification. The LCVAs studied are considerably deeper than the vorticity produced at the edges of VHT cold pool outflows, and their evolution is associated with persistent convection and vortex merger events that act to sustain them. Herein, we highlight the formation and evolution of two representative LCVAs and discuss the environmental parameters that eventually become favorable for one LCVA to reach the center of a larger-scale circulation as tropical cyclogenesis occurs.
  • Keywords:
  • Source:
    J. Atmos. Sci. (2019) 76 (8): 2335–2355
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1