Diurnal seismicity cycle linked to subsurface melting on an ice shelf
-
2019
-
Details
-
Journal Title:Annals of Glaciology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Seismograms acquired on the McMurdo Ice Shelf, Antarctica, during an Austral summer melt season (November 2016–January 2017) reveal a diurnal cycle of seismicity, consisting of hundreds of thousands of small ice quakes limited to a 6–12 hour period during the evening, in an area where there is substantial subsurface melting. This cycle is explained by thermally induced bending and fracture of a frozen surface superimposed on a subsurface slush/water layer that is supported by solar radiation penetration and absorption. A simple, one-dimensional model of heat transfer driven by observed surface air temperature and shortwave absorption reproduces the presence and absence (as daily weather dictated) of the observed diurnal seismicity cycle. Seismic event statistics comparing event occurrence with amplitude suggest that the events are generated in a fractured medium featuring relatively low stresses, as is consistent with a frozen surface superimposed on subsurface slush. Waveforms of the icequakes are consistent with hydroacoustic phases at frequency and flexural-gravity waves at frequency . Our results suggest that seismic observation may prove useful in monitoring subsurface melting in a manner that complements other ground-based methods as well as remote sensing.
-
Keywords:
-
Source:Annals Of Glaciology. Volume 60, Issue 79September 2019 , pp. 137-157
-
DOI:
-
Document Type:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:urn:sha-512:040c55dd8f325bb7bc4b588534859b478d11db2f09dc01750926efa212c477979bebfa3bcb9ec24b9a6991f13e235730b41870ddeb1e4f617de4553d0fa1c493
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
NOAA Cooperative Institutes