Empirical Relations between Size Parameters of Ice Hydrometeor Populations and Radar Reflectivity
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Empirical Relations between Size Parameters of Ice Hydrometeor Populations and Radar Reflectivity

Filetype[PDF-5.81 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Description:
    Empirical power-law relations between the equivalent radar reflectivity factor Ze and the slope parameter of the gamma function Λ (i.e., Λ = c⁠; used to describe ice hydrometeor size distributions) are derived. The Λ parameter can also be considered as a size parameter since it is proportional to the inverse of the hydrometeor characteristic size, which is an important geophysical parameter describing the entire distribution. Two datasets from two-dimensional microphysical probes, collected during aircraft flights in subtropical and midlatitude regions, were used to obtain Λ by fitting measured size distributions. Reflectivity for different radar frequencies was calculated from microphysical probe data by using nonspherical-particle models. The derived relations have exponent d values that are approximately from −0.35 to −0.40, and the prefactors c are approximately between 30 and 55 (Λ: cm−1; Ze: mm6 m−3). There is a tendency for d and c to decrease when radar frequency increases from Ku band (~14 GHz) to W band (~94 GHz). Correlation coefficients between Ze and Λ can be very high (~0.8), especially for lower frequencies. Such correlations are similar to those for empirical relations between reflectivity and ice water content (IWC), which are used in many modeling and remote sensing applications. Close correspondences of reflectivity to both Λ and IWC are due to a relatively high correlation between these two microphysical parameters. Expected uncertainties in estimating Λ from reflectivity could be as high as a factor of 2, although estimates at lower radar frequencies are more robust. Stratifying retrievals by temperature could result in relatively modest improvement of Λ estimates.
  • Source:
    Journal of Applied Meteorology and Climatology, 56, 2479-2488
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.21