Aerially guided leak detection and repair: A pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
i

Superseded

This Document Has Been Replaced By:

i

Retired

This Document Has Been Retired

i

Up-to-date Information

This is the latest update:

Aerially guided leak detection and repair: A pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
  • Published Date:

    2019

  • Source:
    Journal of the Air & Waste Management Association, 69(1), 71-88
Filetype[PDF-2.05 MB]


Details:
  • Description:
    Novel aerial methane (CH4) detection technologies were used in this study to identify anomalously high-emitting oil and gas (O&G) facilities and to guide ground-based “leak detection and repair” (LDAR) teams. This approach has the potential to enable a rapid and effective inspection of O&G facilities under voluntary or regulatory LDAR programs to identify and mitigate anomalously large CH4 emissions from a disproportionately small number of facilities. This is the first study of which the authors are aware to deploy, evaluate, and compare the CH4 detection volumes and cost-effectiveness of aerially guided and purely ground-based LDAR techniques. Two aerial methods, the Kairos Aerospace infrared CH4 column imaging and the Scientific Aviation in situ aircraft CH4 mole fraction measurements, were tested during a 2-week period in the Fayetteville Shale region contemporaneously with conventional ground-based LDAR. We show that aerially guided LDAR can be at least as cost-effective as ground-based LDAR, but several variable parameters were identified that strongly affect cost-effectiveness and which require field research and improvements beyond this pilot study. These parameters include (i) CH4 minimum dectectable limit of aerial technologies, (ii) emission rate size distributions of sources, (iii) remote distinction of fixable versus nonfixable CH4 sources (“leaks” vs. CH4 emissions occurring by design), and (iv) the fraction of fixable sources to total CH4 emissions. Suggestions for future study design are provided.
  • Keywords:
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: