The future is Nye: an extension of the perfect plastic approximation to tidewater glaciers
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The future is Nye: an extension of the perfect plastic approximation to tidewater glaciers

Filetype[PDF-459.83 KB]



Details:

  • Journal Title:
    Journal of Glaciology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Accurate modeling of calving glaciers relies on knowledge of many processes (ice flow, surface/submarine melting, calving, mélange interaction) and glacier-specific factors (air temperature, ocean circulation, precipitation rate, glacier geometry) that remain challenging to assess. Iceberg calving, especially, is important to glacier mass loss and difficult to resolve in currently-available models. Given these challenges facing even the most sophisticated models, there is value in simple, computationally-efficient models that can capture first-order effects. In this study we derive a simple model, extending Nye's perfect plastic approximation to include a yield surface at the calving front. With one climate-related input—either an upstream glacier thinning rate or glacier-wide accumulation—this model is able to simulate the advance and retreat of marine-terminating glaciers on annual to decadal scales. Our model requires knowledge of only two glacier-specific factors: glacier bed topography and basal shear strength, both reasonably constrained by laboratory and field observations. We apply the model to a case study of Columbia Glacier, Alaska and show that, despite its simplicity, the model succeeds in reproducing observed centerline profiles and rates of terminus retreat up to 2007.
  • Keywords:
  • Source:
    J. Glaciology. Aug 2018; 62(236): 1143-1152
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1