Global Survey of Precipitation Properties Observed during Tropical Cyclogenesis and Their Differences Compared to Nondeveloping Disturbances
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Global Survey of Precipitation Properties Observed during Tropical Cyclogenesis and Their Differences Compared to Nondeveloping Disturbances

Filetype[PDF-5.24 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • Description:
    AbstractThis study evaluates precipitation properties involved in tropical cyclogenesis by analyzing a multiyear, global database of passive microwave overpasses of the pregenesis stage of developing disturbances and nondeveloping disturbances. Precipitation statistics are quantified using brightness temperature proxies from the 85–91-GHz channels of multiple spaceborne sensors, as well as retrieved rain rates. Proxies focus on the overall raining area, areal coverage of deep convection, and the proximity of precipitation to the disturbance center. Of interest are the differences in those proxies for developing versus nondeveloping disturbances, how the properties evolve during the pregenesis stage, and how they differ globally. The results indicate that, of all of the proxies examined, the total raining area and rain volume near the circulation center are the most useful precipitation-related predictors for genesis. The areal coverage of deep convection also differentiates developing from nondeveloping disturbances and, similar to the total raining area, generally also increases during the pregenesis stage, particularly within a day of genesis. As the threshold convective intensity is increased, pregenesis cases are less distinguishable from nondeveloping disturbances. Relative to the western Pacific and Indian Oceans, the Atlantic and eastern North Pacific Oceans have less precipitation and deep convection observed during genesis and the smallest differences between developing and nondeveloping disturbances. This suggests that the total raining area and areal coverage of deep convection associated with tropical disturbances are better predictors of tropical cyclogenesis fate in the Pacific and Indian Oceans than in the Atlantic and eastern North Pacific.
  • Source:
    Monthly Weather Review, 148(4), 1585-1606.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.24